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Location-level processes drive the establishment of 
alien bird populations worldwide
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Human-mediated translocation of species to areas beyond their 
natural distribution (which results in ‘alien’ populations1) is a key 
signature of the Anthropocene2, and is a primary global driver 
of biodiversity loss and environmental change3. Stemming the 
tide of invasions requires understanding why some species fail to 
establish alien populations, and others succeed. To achieve this, 
we need to integrate the effects of features of the introduction 
site, the species introduced and the specific introduction event. 
Determining which, if any, location-level factors affect the success 
of establishment has proven difficult, owing to the multiple spatial, 
temporal and phylogenetic axes along which environmental 
variation may influence population survival. Here we apply 
Bayesian hierarchical regression analysis to a global spatially and 
temporally explicit database of introduction events of alien birds4 
to show that environmental conditions at the introduction location, 
notably climatic suitability and the presence of other groups of alien 
species, are the primary determinants of successful establishment. 
Species-level traits and the size of the founding population 
(propagule pressure) exert secondary, but important, effects on 
success. Thus, current trajectories of anthropogenic environmental 
change will most probably facilitate future incursions by alien 
species, but predicting future invasions will require the integration 
of multiple location-, species- and event-level characteristics.

Globally, alien species are accumulating at ever-increasing rates5, 
mainly driven by growing trade and transport connectivity6. Once an 
alien species is established (that is, self-sustaining) in a new location, 
the economic and environmental costs of eradicating it or controlling 
its spread are often prohibitive3. Understanding the processes that facil-
itate or inhibit the initial establishment of alien species is therefore a 
critical step in limiting the future threat of biological invasions. Most 
early attempts to predict the establishment of alien species focused on 
the characteristics of the introduced species or the introduction loca-
tion7, but with limited success8, and did not consider the key role of 
idiosyncratic ‘event-level’ factors—notably, propagule pressure9. Some 
species-level traits (life history10, behavioural traits11 and ecological 
traits12) have subsequently been shown to explain variation in the 
successful establishment of alien populations. However, determining 
which—if any—location-level factors have a general effect on success 
at a global level, and across large taxonomic groups, has proven chal-
lenging for several reasons.

First, many biotic (for example, recipient assemblage composition13) 
and abiotic (for example, climate14 and disturbance15) factors may be 
important. Second, these factors vary across both space and time, 
and drive differences in susceptibility at a range of levels of biological  
organization—at the population (for example, stochastic weather 
events), species (for example, climatic affinity), community (for 
example, native species richness) and landscape (for example, habitat 
composition) levels. Third, how a new environment interacts with a 
species is dependent on the evolutionary and adaptive history of the 
species that is introduced16: a harsh environment for a house sparrow 
(Passer domesticus) may or may not be harsh for the closely related 

Eurasian tree sparrow (Passer montanus), and vice versa. Fourth, alien 
introductions happen in synergy with other major anthropogenic  
environmental changes, such as increasing human population density, 
agricultural land conversion and the presence of other alien species17. 
Yet, despite this apparent complexity, many previous analyses have 
treated location-level variables in a relatively simplistic way, consid-
ering either only coarse features of locations (for example, latitude18 
or island versus continent19) or gross differences between native and 
alien environments20, and typically ignore spatial autocorrelation21. 
Therefore, we await an integrated analysis of variation in the establish-
ment of alien populations.

Here we undertake a global analysis to identify both the absolute 
and relative contributions of location, species and event-level processes 
in predicting the establishment of alien populations. Using birds as a 
model system, we interrogate data on the success or failure of 4,346 
individual introduction events that span 708 species and—crucially—
include information on propagule pressure, the key event-level driver of 
establishment9. To assess the specific influence of location, we consider 
a wide array of abiotic, biotic and anthropogenic factors. These factors 
account for both the mean and temporal variability in the abiotic envi-
ronment, the suitability of the environment in terms of its similarity 
to the conditions that are experienced by a species in its native range 
(termed ‘environmental match’), metrics of human disturbance and the 
characteristics of recipient biological communities, including both their 
diversity and their phylogenetic similarity to each introduced species. 
Finally, we incorporate aspects of species’ life history, behaviour and 
ecology that have previously been hypothesized to explain establish-
ment success in alien birds. Features of introduction events are not 
random with regard to the identity, relatedness and characteristics of  
the species introduced16, their spatial location of origin and introduction4,  
nor to propagule pressure22, and so we undertake this analysis using 
Bayesian hierarchical regressions, inferred using integrated nested 
Laplace approximation23. This method provides efficient and accurate 
parameter estimations for complex inferences that incorporate both 
random and fixed effects, which allows us to control for spatial and 
temporal non-independence in the abiotic and biotic features of loca-
tions, and for taxonomic non-independence in species traits.

At a global scale, combinations of location-, species- and event-
level variables are selected as important terms across all fitted models, 
including the best-fitting model of avian establishment success (Fig. 1, 
Extended Data Table 1; n = 1,530, Watanabe–Akaike information  
criterion (wAIC) = 892.96, area under receiver operating curve = 0.75; 
see ‘Statistical modelling outline’ in Methods for further details). This 
result was robust to the precise way in which introduction events 
were defined (Extended Data Fig. 1) and highlights the fact that alien 
establishment cannot be adequately explained by characteristics of the  
environment, the species or the specific introduction event in isolation. 
The most strongly supported individual determinant of establishment  
is the environment of the recipient location (Fig. 2a). Within this  
category, anthropogenic features, followed by climatic suitability, have 
the greatest influence on establishment success (Fig. 2b).
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A strong anthropogenic determinant of establishment success is the 
number of alien taxonomic groups that are already established at a 
location at the time of introduction. The positive effect of the number 
of alien groups that have been introduced is broadly consistent with 
the invasion meltdown hypothesis17, which states that the ecological 
disruptions that are caused by (or enable) earlier invasions facilitate 
further successful introductions. This result is not simply indexing 
anthropogenic environmental disturbance; although crop coverage 
and human population density were included in the best-fitting model, 
they did not have a strong and consistent global signal for the success-
ful establishment of alien populations (Fig. 1, Extended Data Fig. 2). 
This may be due to historical patterns of introductions being mainly 
restricted to areas that are already disturbed12. In fact, our analysis 
shows that less-disturbed areas have higher rates of establishment  
success, with rapid agricultural land conversion not only causing native 
species declines2 but also negatively affecting alien species—at least 
during the early stages of the invasion process.

Previous evidence has suggested that species are more likely to 
establish when they are pre-adapted to local climatic conditions16, 
and our analysis confirms this hypothesis. We found that the  
successful establishment of alien populations is highest in locations 
in which environmental conditions are more similar to those in the 
species’ native range (environmental match, Figs. 1, 2), albeit with the 
proviso that average conditions across the range are relatively crude 
measures of climatic preferences. Our analysis also suggests a hump-
shaped effect of mean annual temperature on establishment (Fig. 1). 
This relationship implies a ‘Goldilocks effect’, such that locations with 
intermediate conditions are more amenable to establishment than 
those that are too hot or too cold, regardless of the conditions that 

are naturally experienced by each introduced species. Environmental 
extremes are also important24, with establishment success reduced by 
the occurrence of historical storm events in the period immediately 
after introduction. Anecdotal evidence had previously suggested that 
extreme weather was a cause of specific establishment failures (for 
example, the house crow (Corvus splendens) on Mauritius25), and our 
spatiotemporal analysis identifies this as a general effect in the global 
record of avian introductions.

The extent to which communities differ in their biotic resistance  
to introduced species has remained controversial, with studies  
variously reporting positive, negative or no effects of local species rich-
ness on patterns of establishment26. Overall, we found that the biotic 
environment had a relatively weak effect on establishment compared 
to the other location-, species- and event-level factors. Nevertheless, 
accounting for these other factors revealed a potential negative effect 
of the species richness of native birds on the successful establishment 
of aliens; this switched to a hump-shaped relationship (Fig. 1) when 
considering only the most closely related species, which are presum-
ably similar in ecological terms. These results help to clarify previous 
contradictory findings by showing that, although overall native biodi-
versity may inhibit invasions, this effect is relatively weak compared 
to other extrinsic and intrinsic factors, and it may be partially masked 
by the tendency for locations with some closely related species to be 
more environmentally suitable for aliens introduced there, and thus 
be more susceptible to establishment (that is, the biotic acceptance 
hypothesis17).

In addition to environmental factors, features of the species’ life 
history and ecology are strongly supported as determinants of estab-
lishment success. In particular, in birds larger brood sizes promote 
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Fig. 1 | Posterior distributions for fixed-effects parameter estimates for 
the best-fitting model of the success of alien bird establishment. Box 
plots summarize the posterior marginal distributions for all fixed-effects 
parameters (β) from a Bayesian regression of the most-conservative subset 
of the data (n = 1,530 introductions). Box widths show the interquartile 

range, the mean is represented as a bold vertical line within each box, and 
whiskers denote the 2.5–97.5th percentiles (that is, the 95% credibility 
interval) of the distribution. Colours indicate the fixed-effect category, and 
bold y-axis labels indicate that there is evidence for a non-zero slope for 
the described data variable. For further details, see Extended Data Table 1.
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establishment, whereas lifespan showed a hump-shaped relationship 
with invasion success (Fig. 1, Extended Data Fig. 2), which confirms 
previous evidence of a trade-off between the benefits of fast and slow 
life histories10. Although species with fast life histories can quickly gain 
a ‘foothold’ at a new location through rapid population growth, slower 
life histories provide resilience against demographic and environmental 
variation, which enables alien populations to better ride out extreme 
conditions27,28. In our model, there is also evidence that foraging 

generalism and habitat-use generalism may, together, increase establish-
ment success. Life-history variables are, in general, strongly phyloge-
netically conserved (for example, brood size, λ = 0.96; Fig. 3), which 
implies that related species may have similar rates of establishment  
success. However, globally, establishment success has a much weaker  
phylogenetic signal (λ = 0.4; Fig. 3), owing to the fact that phylogenet-
ically conserved traits are overwhelmed by the combined spatial effects 
of the local environment and propagule pressure, which tend to exhibit 
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Fig. 2 | Relative effect size of different categories of predictors in the 
best-fitting model of the success of alien bird establishment. Each 
wedge represents the sum of the change in wAIC for the fixed effects 
in each category when added to a Bayesian regression of establishment 

success versus failure (n = 1,530 introductions). a, Variables classified into 
location-, species- and event-level categories. b, Sub-categories within the 
broad levels shown in a (n = 1,530 introduction events).
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Fig. 3 | Phylogenetic patterns of invasion probability across alien birds. 
This figure shows 358 species with the highest-quality information on 
introduction events. Blue, green and yellow outer bars show the mean 
establishment potential of a species across all 1° grid cells beyond its native 
range, with longer and yellower bars indicating that a species has greater 

potential to establish outside its native range. Phylogenetic branches are 
coloured according to brood size, with lighter colours indicating higher 
brood sizes and darker colours indicating lower brood sizes. Silhouettes 
(from http://phylopic.org/) show the approximate location of avian taxa.
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little phylogenetic signal. The inherently idiosyncratic nature of these 
effects with regard to the identity of the species introduced (the Spearman  
ρ between predictions based on life history and the final model is 0.64) 
explains why it has proven difficult to identify consistent life-history 
predictors of establishment in isolation29.

Finally, we confirm the strong general role of propagule pressure 
which, consistent with previous work on alien birds30, is best repre-
sented by an asymptotic log-term (Fig. 1, Extended Data Fig. 2): small 
founding populations are likely to fail owing to stochastic and Allee 
effects, whereas the success of larger populations30 depends on the 
species- and location-level effects that we identify here. Our analysis 
highlights the key role of the presence of other groups of alien species 
in establishment success (which suggests that locations that are already 
hotspots for introductions are especially susceptible to accumulating 
alien species), but also shows that alien species are more likely to estab-
lish when they are pre-adapted to local climatic conditions. Growth in 
global trade means that an ever-growing number of species are being 
introduced to novel locations4,31, and the environmental matches of 
ever-more species are being tested against new environments. These 
trajectories will facilitate future incursions by alien species, exhibit-
ing features of an invasion meltdown32, which—as we show—could 
be exacerbated depending on the precise combinations of species and 
sites at which the introductions are occurring. Our analyses confirm 
the urgent need for enhanced management programmes to prevent or 
mitigate the negative effect of these invasions.
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Methods
Alien introduction events. We collated all of the records from the GAVIA data-
base of global bird introductions4,31 that contained geo-referenced introduction 
events at known specific (for example, sub-national and below) point locations 
(that is, the locations at which the species was recorded as having escaped or been 
released) and at specific dates, excluding those records from GAVIA that related 
to spread after an introduction event (Supplement Information Data 1). This  
process initially resulted in 5,834 records, with accompanying spatial polygon data  
created by drawing around the smallest geographical unit to which the introduc-
tion event could be reasonably attributed4. Some records were at a specific location 
(for example, a single building address, park or harbour), and a small minority 
of event records could only be assigned at a coarser spatial scale (for example, 
city or county). We note there is some geographical bias in the records: most of 
the introductions occur in the Australasian region (19% of records), followed by 
the Palaearctic (18%), Oceanic (17%) and the Nearctic (16%), with the fewest 
records being from the Afrotropic (12%), Neotropic (10%), Indomalayan (8%) 
and Antarctic (<1%) realms. However, introduction events occur predominately 
within regions and high-profile historical routes between continents (for example, 
Europe to Australia) are relatively rare given the huge increase in introductions 
in recent decades5; for example, through accidental transport and the trade in 
wildlife31 (Extended Data Fig. 3).

Using data from the original source in GAVIA as well as external sources, we 
thoroughly checked all introduction records for potential errors and removed any 
records that were possibly dubious—usually owing to misreported dates or loca-
tions across multiple references. This resulted in n = 4,346 unique introduction- 
event records (Supplementary Data 1). We then used text information (again 
from the original source) to categorize the introduction events as either known, 
specific introduction events (introductions, n = 1,784), first sightings (sightings, 
n = 584) or as having no clear designation (unknown, n = 1,978). Finally, we 
noted whether any records were part of a chronological sequence of introduction 
events that involved a single species at a single location; for example, the Eurasian 
skylark (Alauda arvensis) was imported and released on 6 separate occasions in 
the Barrabool Hills (Victoria, Australia) from 1852 to 1880. From these we created 
four data subsets of decreasing size but increasing specificity: ‘All Records’ con-
tained all the records in the database (n = 4,346); ‘Intro. & Unk.’ contained records 
that are known introductions as well as records that have no detailed description 
(n = 3,762); ‘Introductions’ contained all records that are specified as detailed 
introduction events (n = 1,784); and ‘Last Introduction’ (n = 1,530). This final 
subset of the data contained known introduction events, but with events that were 
part of a chronological sequence of introduction events collapsed into a single 
record, summarized using the date of the last introduction event and the cumula-
tive propagule pressure across events. Owing to the exhaustive nature of the data 
collection process that we used, all available data were used in each component 
analysis and no statistical methods were used to predetermine sample size.

Based on previous hypotheses of avian establishment success reported in the 
literature (Supplementary Data 2), we collated information on a wide range of 
covariates that could reasonably affect establishment success. We categorized these 
covariates into the three categories of establishment determinants, as previously 
defined16—location-, species- and event-level factors—and further distinguished 
between different types of species- and location-level factors as described below.
Event-level factors. Propagule pressure. We extracted from the original reference 
source, where available, a numerical estimate of propagule pressure (founding 
population size), measuring both the number of introduction events per record 
(propagule number9) and the number of individual birds that were introduced 
at each event (propagule size9). For a minority (n = 67 or ~0.01%) of records 
that only had descriptive text regarding the number of individuals introduced, we 
translated any common terms according to the following rules. When describing 
individuals released: ‘few’ = 3, ‘several’ = 5, ‘some’ = 10, ‘small numbers’ = 10, 
‘many’ = 25, ‘flock’ = 25, ‘large numbers’ = 100, ‘shipment’ = 200, ‘mass’ = 250 
and ‘great numbers’ = 250. When describing propagule number: ‘repeated’ = 5, 
‘several’ = 5, ‘releases’ = 2, ‘numerous’ = 10, ‘many’ = 10 and ‘frequent’ = 10. We 
decided on these numbers by summarizing, where available, records that contained 
both these descriptive qualifiers and a numerical figure for number introduced. To 
calculate propagule pressure (that is, the relative size of the introduction effort9), 
we used the recorded number of individuals introduced. When this data type was 
missing, we added in the median propagule size (five individuals introduced) or—if 
the number of discrete introduction events were available—we used the median 
propagule size multiplied by propagule number.
Species-level factors. Life-history traits. For each species, we assembled data from 
published sources on a number of life-history traits that have previously been 
linked to establishment success in birds, including mean clutch size, number  
of clutches per year, age at first breeding (months) and maximum lifespan 
(years)10,33,34. We additionally included data on mean adult body mass in grams35. 
Species for which data could not be collected (clutch size (11%), number of clutches 

per year (48%), age at first breeding (66%) and lifespan (52%)) were assigned the 
mean value of the lowest inclusive taxonomic rank (that is, genus, family or order) 
for which data were available. This approach is justified because most of the vari-
ance in avian traits, as calculated from our data, occurs at taxonomic levels above 
that of genus (clutch size (91%), number of clutches per year (70%), age at first 
breeding (83%) and lifespan (62%)). We also include a previously used measure 
known as brood value, which is expressed as log10(1/[(broods per year) × (repro-
ductive lifespan)])10 and represents investment in future over current reproduction.
Behavioural traits. For each species, we assembled data on relative brain size, 
quantified as the residuals from a least-squares regression of brain size on body 
size (both log-transformed)36. Relative brain size provides a metric of behavioural 
flexibility that has previously been shown to relate to establishment success in  
birds37. Species with missing data (72%) were assigned the mean value of the  
lowest inclusive taxonomic rank (that is, genus, family or order) for which data 
were available. As for life-history traits, most of the variance in brain size (93%) 
occurs at taxonomic levels above the genus.
Ecological traits. Data on species-specific diets and foraging strategies came from a 
previous publication38: for both of these variables, a total value of 100 was divided 
between categories to represent the percentage of time that a species spends  
feeding on a particular food type or foraging in any particular location. Habitat-use  
data for each species were extracted from the IUCN Red List database39. For each 
ecological variable (diet, foraging and habitat), we calculated two measures of  
generalism, using the total number of different categories used and Simpson’s 
diversity measure D40.
Location-level factors. Abiotic environment. Global geophysical data (altitude 
above sea level and slope percentage) were downloaded in pre-processed geoTiff 
format at 1-km grid scale41. A third variable, altitude variance, was computed 
with the R function aggregate (raster package42) using the variance of the altitude 
values of 3 × 3 grid cells, such that all 9 cells had the same final value. Bioclimatic 
data in the form of global averages from 1960–2000 were restricted to large  
terrestrial land masses, and were downloaded as four ESRI format ascii data grids, 
at 30-arc-second (~1-km) resolution. They consisted of mean annual temperature, 
annual variation in temperature (temperature seasonality43), mean annual rainfall 
and annual variation in temperature (precipitation seasonality43). Abiotic data for 
islands came from an island-specific dataset44 and had the same variables as for 
large terrestrial land masses, but were represented as a spatially referenced spread-
sheet that contained data on climate and physical characteristics of the majority 
of the world’s islands. For islands that were not represented in the gridded biocli-
matic data, we identified missing values for the above bioclimatic and altitude data, 
and—by matching the island name in the GAVIA data with the island name in the 
bioclimatic dataset—we were able to extract the mean annual temperature, annual 
variation in temperature, mean annual rainfall, annual variation in temperature 
and altitude. For islands, we also included distance to continent (giving non-island 
records a value of zero) represented by the ‘dist’ column from that dataset. We also 
used a measure of remoteness (again giving continents a value of zero), using the 
‘SLMP’ column of the dataset.

Historical climate data (1850–2007) were downloaded as 6 × 4-km netCDF 
grids for six main variables: sea surface temperature (SST), air temperature (A), 
U-wind (Uwind), V-wind (Vwind), sea-level pressure (SLP) and cloudiness 
(CLDC) from the HADCRUT3 dataset45. Historical spatiotemporal land-cover 
data (1700–2007) were downloaded as global ESRI format ascii data grids at ~5-km 
resolution, consisting of the proportion cover of primary and secondary habitats, 
from the Harmonised Land Use dataset46. To reduce collinearity in a regression 
(that is, the dummy variable trap) the ‘other’-category data were not included in 
the analysis, such that the addition of all the land-use categories in each grid cell 
did not sum to one.

These environmental data were extracted at each record location by calculating 
the mean grid-cell values that intersected the introduction-event polygon (R func-
tion extract42). For very specific introduction events, this would be the single cell 
in which the event polygon was located; for less-specific data for the introduction 
event, there was sometimes more than one grid cell that overlapped the polygon. 
For the spatiotemporal data, extractions for each record were undertaken only on 
the temporally nearest data layers. For example, for the historical climate data, a 
maximum anomaly value at that location over the 10 years (120 months) post- 
introduction was used, with records outside the dataset time period (<5% of the 
total records) being designated missing, using ‘NA’. For the land-cover data, which 
represent a yearly rather than a monthly dataset, records were matched by intro-
duction year to the specific global land-cover layer so that the contemporary (at the 
time of introduction) percentage cover for five land-use types (primary, secondary, 
cropland, pasture and urban) could be calculated. Records earlier than the starting 
year of the land-cover dataset (<1% of total records) were designated missing in 
each land-use covariate, using NA. We note that there is uneven sampling here, 
with most historical introductions occurring in human modified landscapes: for 
instance, in forested areas, only 8% of the introduction polygon is designated as 
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primary at the time of introduction. This means, for some specific land-cover types, 
we may not be able to resolve their specific effects on invasion success. For each 
land-cover type noted above, an additional variable was constructed; this was the 
gradient of change in land cover in each grid cell over the ten years before each 
introduction event. This was calculated using a linear regression (R function lm) 
of land-cover proportion explained by year, and taking the slope (β) as the value 
of change per cell.
Environmental match. Range maps for species’ native distributions were down-
loaded from Birdlife International and NatureServe (www.birdlife.org) and 
extracted onto an equal area grid (~110 × 110 km) in a Behrmann projection. 
These maps show the extent of occurrence for each species, and so are relatively 
crude depictions of the area that is occupied by the species, but are nevertheless 
commonly used for analyses of this type. We quantified species’ environmental 
preferences using the mean and standard deviation of climate conditions across 
grid cells in their native distributions on the basis of four climatic indices from the 
WorldClim dataset (BIO1, mean annual temperature; BIO4, temperature season-
ality; BIO12, annual precipitation; and BIO15, precipitation seasonality)43. Using 
each of these input variables (to capture, as a single variable, the environmental 
match between the introduction site and the environmental conditions experienced 
in the species’ native range), for each introduction event we calculated the distance, 
in measurement space, between the Euclidean distance from mean values taken 
from the grid cells at the introduction site (sources defined in ‘Abiotic environment’, 
above) to the mean values from the native range of the introduced species. For each 
climatic axis, we divided the distance by the standard deviation of native climatic 
values, as some species have very large ranges with a corresponding wide range of 
acceptable native climatic values. We note that this measure is a relatively coarse 
way of measuring native preferences, as fine-scale habitat variation within the 
range may act to bias the mean value; however, finer-scale data are not available 
for all introduced species.
Biotic environment. To test whether interactions with native resident species may 
influence establishment success, for each combination of introduced alien species 
and grid cell we calculated four metrics of community diversity and structure: 
(i) the richness of all native resident species, (ii) the number of native species in 
the same genus or (iii) family, and (iv) the nearest taxon index, representing the 
phylogenetic branch length (in millions of years) that separate an introduced alien 
species from its closest relative in the recipient community. Recipient communities 
were designated as those bird species that had ranges that overlapped with any of 
the introduction polygon—though we note that not all species in this sample would  
be interacting if they used very different habitats. Phylogenetic distances were  
calculated as the mean across 100 phylogenies sampled at random from the posterior  
distribution of trees from a previous phylogeny47 with the Hackett backbone. These 
variables thus quantify the overall species richness of the location of introduction 
(metric (i)), and the location’s richness relative to the phylogenetic position of the 
introduced species (metrics (ii), (iii) and (iv)).
Anthropogenic environment. To determine the role of human disturbance and 
urbanization12 in facilitating the establishment of invasive species, we captured 
the spatial variation and prior ten-year change in human population density, urban 
land, crop and pastoral land coverage from the Harmonised Land Use dataset46, 
using the same methods as for abiotic environment variables.

We also tested whether establishment probability is related to the prior presence 
of other alien species. We determined whether any alien species were present at 
a given site before each introduction event using published data5 on first records 
for a number of groups (algae, amphibians, arachnids, arthropods, bacteria and 
protozoans, birds, bryophytes, crustaceans, fishes, fungi, insects, invertebrates, 
mammals, molluscs, reptiles, plants, and viruses), recorded at the level of country 
or major island group. For larger countries, this value would be less accurate but 
most of our data are for islands (66% of introduction records). Furthermore, these 
data represent the best spatiotemporal knowledge currently available; further work 
using site-level data would be able to examine these relationships in more detail. 
For each introduction event, we create a binary variable with a value of 1 for each 
group if any species from that group was present at least one year before the bird 
introduction event, and 0 if no species from that group were present.
Statistical modelling outline. We modelled the establishment success or failure  
of bird introductions using a Bayesian hierarchical regression inferred using  
integrated nested Laplace approximation, as implemented in the R package 
R-INLA48 (Supplementary Information, code 1). We used this method because it 
provides accurate parameter (for example, β) estimates for complex regressions 
incorporating both spatial and non-spatial random and fixed effects with very low 
computational overheads23. We evaluated the model fit for covariate choice via 
the wAIC49 and the conditional predictive ordinate (CPO). wAIC is a criterion for 
model comparison and is an extension of the Akaike information criterion (AIC) 
but is widely applicable to Bayesian inference techniques and offers clearer inter-
pretation than other options50. Similar to AIC, wAIC provides a method to penalize 
the ability of the model to fit the observed data by the number of parameters used 

to create the underlying model. This value is more suitable for a Bayesian frame-
work as it integrates across the whole posterior distribution rather than relying 
on summary statistics (for example, mean of posterior distribution). Similarly, 
the CPO approximates the ‘gold-standard’51 leave-one-out cross-validation, and 
calculates the posterior probability of a model inferred without each data point. 
The sum of the log CPO scores therefore represents an estimator for the log mar-
ginal likelihood of the model. Given that wAIC tends to ∑ln(CPO) under ideal 
circumstances51 (in our case, Spearman correlation ~0.99), we henceforth report 
only wAIC as a proxy for CPO.

We model the number of establishment successes across the dataset as a  
binomial random variable (success = 1, failure = 0) and use the normal approx-
imation to the binomial, as expected under the central limit theorem given our 
large numbers of trials. This was due to the computational efficiency of using 
the Gaussian distribution, allowing us to repeat the modelling procedure many 
times with no loss of predictive accuracy (mean hold-out cross-validated area 
under receiver operating curve statistic (AUC) for Gaussian = 0.68 ± 0.05, versus 
AUC = 0.67 ± 0.06 for the binomial mean). To convert the ‘StatusCat’ column 
from the GAVIA dataset to the response variable, we recoded the categories of 
‘established’ and ‘breeding’ to 1 and the known failure categories (‘died out’ and 
‘failed’) to 0. For a large proportion of records, the success or failure of an avian 
introduction was unknown (n = 2,234). In these cases, we used the introduc-
tion event polygon associated with each record to search for the alien species in 
sightings from eBird52 and other sources from within the Global Biodiversity 
Information Facility (GBIF; https://www.gbif.org/). We downloaded all occur-
rences from GBIF, within 0.5 degrees of both latitude and longitude of the centre 
point of each introduction event. Then, using the ‘observation date’ associated with 
each GBIF record and the ‘mapping date’ associated with each GAVIA record, we 
counted the total number of individuals seen within the 0.5-degree buffer in the 
past ten years (2007–2017). We changed unknown values to 1 (succeeded) if there 
were more than 15 records of the introduced species within 0.5 degree (~ 95 km at 
the equator) of the introduction site in the past 10 years, and 0 (failed) if fewer. To 
ensure our results were robust to these thresholds, we changed the record density 
threshold used to identify whether a species is established by increasing the buffer 
size used to capture GBIF observations to 1 degree, and then 1.5 degrees, of both 
latitude and longitude around the introduction point.

To account for known spatial autocorrelation in the input data31, we imple-
mented a stochastic partial differential equations model (SPDE) with the  
hierarchical regression that builds a latent error surface, of user-defined complexity, 
to account for similarities in more-closely located data points48. We inferred the 
regression models using an SPDE term and mesh with varying characteristics to 
find the range, standard deviation of the range, cut-off and maximum edge values 
using the wAIC score, to determine the best version of the SPDE model. To account 
for the random effect of phylogenetic non-independence, we included ‘iid’ random 
effects of species’ taxonomic family and order. To account for temporal differences 
in recording accuracy and in methods of introduction31 at the same location over 
time, we included a random-walk auto-correlated random effect48 for the year of 
introduction. To remove effects of very large or small values, for each covariate we 
capped low values at the 1% quantile and high values as the 99% quantile.

Finally, for each model we assessed all recommended diagnostics to ensure 
the model was robustly fitted, including plotting and visualizing the distribution 
and probability density of the out-of-sample CPO per data point score (using 
10-fold, 10% hold-out, cross-validations) (Extended Data Fig. 4a, b) and spatially  
mapping the same values (Extended Data Fig. 4c) to check for parts of data that were 
poorly predicted by the model. Then, using the mean of the posterior distribution  
of the linear predictor, we used an AUC approach (AUC score) to calculate the 
predictive accuracy of each model. This process works by measuring the numbers 
of correctly and incorrectly labelled predictions across all possible classification 
threshold values of the binomial response variable. An AUC value equal to or less 
than 0.5 indicates a predictive ability that is equal to the random expectation, and 
an AUC value close to 1 indicates a perfect predictive ability.
Analysis protocol. We first used the most-conservative dataset for analysis—which 
contained known introductions events (n = 1,530 records) (Supplementary Data 3).  
Then, to ensure our random-effect terms were valid in their inclusion, we first 
fitted a model with just an intercept, then just an intercept and spatial term, and 
then added in other random effects one at a time (Extended Data Table 1). For 
each additional step of complexity, we recorded the change (Δ) in the wAIC value49 
and only included random effects that increased the fit of the model by more than 
two wAIC units. We used uninformative priors in all cases except for the spatial 
term, for which we set the priors to a set of reasonable estimates of the range 
and standard deviation of the range to understand how this specification affected 
parameter estimates.

To increase the biological interpretability of our models (and owing to the 
large number of covariates and high collinearity between them), we then added 
all explanatory variables (Supplementary Data 2) into a regression model in a  

http://www.birdlife.org
https://www.gbif.org/
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stepwise manner and, after each step, assessed model fit using the wAIC value. 
So that the effect sizes of the different covariates could be better compared, each 
explanatory variable was standardized to a mean of zero and standard deviation of 
one before it was added. At each model-choice step, we used the standard threshold 
of ΔwAIC > 2 to select better models53. When offering steps either forward or 
backwards, we allowed the choice of either a linear representation of the covariate, 
the natural logarithm of the term, or a linear and squared term to allow for situa-
tions in which a curvilinear relationship fitted better than a linear slope.

To examine whether the model selection process was robust to decisions relating  
to the database, we ran several additional versions of the stepwise regressions 
to see whether the key variables identified in the main analysis above were still 
recovered. We first ran a stepwise regression using all the introduction records 
and then repeated the process with all the other subsets of data. We also ran dif-
ferent versions of the stepwise selection with the different buffer sizes for the GBIF  
missing-data interpolation to test the sensitivity of the imputation process.

We then used the lowest wAIC model to predict establishment success over a 
1-degree grid of points covering all land areas (n = 19,561 cells) for each intro-
duced alien species (n = 358 species). We only used already established alien  
species because new species are being added to the current pool of aliens at a  
relatively low rate, and this current pool will probably make up the vast majority 
of future invasions5. When predicting, we set the random-effects introduction 
year as 2015 to be as close to the present day as possible and propagule pressure as 
150, the lowest value after the threshold beyond which the number introduced has 
limited effect (Extended Data Fig. 2). All predicted values for which the confidence 
was low (such that the 95% confidence intervals for the grid cell estimate covered 
0 and 1), were designated as NA. Using the prediction layers for each species we 
created two datasets. First, by using a 10% trimmed mean of the probability of 
success for every species value for each grid cell, we were able to determine which 
areas of the world had the highest establishment potential and—therefore—were 
at risk of this set of introduced species establishing there. Second, by using 10% 
trimmed means for all values in each of the 384 layers, we were able to create an 
index of establishment potential per species, which we then mapped on to a recent 
phylogeny47. We calculated the phylogenetic signal of these values using Pagel’s λ 
(R function phylosig54) and used a permutation test to test the probability that these 
values deviated from 0, indicating a significant relationship between phylogenetic 
relatedness and species trait values.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
All data generated or analysed during this study are included with the paper and 
its Supplementary Information.

Code availability
Code used to calculate the final model is included in Supplementary Information.
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Extended Data Fig. 1 | Sensitivity analysis of slope (β) estimates for  
the linear terms of a subset of variables across all versions of the input 
data. Dot size is the size of the β value, with colour representing direction 
(red, positive; blue, negative). Each row label represents the name of the 
fixed effect. The column headings represent the subset of data used:  
‘all-records’, all data (n = 4,346); ‘intro-and-unk.’, all data, but one record 

per species-location event (n = 3,762); ‘intro-only’, detailed introductions 
only (n = 1,784); ‘intro-last-only’, detailed introductions, but one record 
per species-location event (n = 1,530). The number at end of each 
column heading indicates the relative size of the buffer used to impute 
establishment status (Methods).
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Extended Data Fig. 2 | Approximate shape of fixed effects over the 
range of observed values. Each panel represents the prediction using 
β slope estimates from the lowest wAIC model over the known range of 
values for that given fixed effect (identified by strip title) from the raw 

data. Only fixed effects for which the values were unlikely to include zero 
are included. All panels from a single Bayesian regression of global avian 
establishment success (n = 1,530 introductions).
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Extended Data Fig. 3 | Chord diagram showing the directions of origin 
and introduction location of avian introduction events between regions 
of the world. The chords near the edge represent introductions to a region; 

chords away from the edge show origins of introduction. The width of 
chord is the relative number of introduction events (n = 4,346).



Letter RESEARCH

Extended Data Fig. 4 | Model diagnostics from the best-fitting model.  
a, Plot of out-of-sample CPO scores for all data points in rank order 
used in the model. b, Probability density of the CPO scores. c, Map of 
CPO scores. CPO is the probability of generating each data point in the 

dataset from a posterior fitted without this data point. Each panel allows 
visualization of where in the data the model does not fit well. All plots 
from a single Bayesian regression of global establishment success of avian 
introductions (n = 1,530 introductions).
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Extended Data Table 1 | All covariates in the best-fitting model, from a Bayesian regression of global avian establishment success

n = 1,530 introductions. Each variable (column, variable name) is assigned a hierarchical category (category level 1–3), the mean for the posterior distribution for β estimates (mean β), the s.d. for the 
mean value (s.d. β), and the 25th, 50th and 75th quantiles (25% quant, 50% quant and 75% quant) of the posterior distribution of each β estimate.
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